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ABSTRACT

In nondestructive testing (NDT), ensuring defect detection, measurement accuracy, and 
reliability guarantees various components’ structural integrity and safety. The Probability 
of Detection (POD) concept has emerged as a fundamental measure of the effectiveness of 
an inspection technique in identifying defects. Since NDT plays a crucial role in aerospace, 
manufacturing, and infrastructure industries, enhancing POD has become critical. POD 
refers to the likelihood that a flaw or defect of a certain size will be detected using the 
NDT technique. The “â versus a” and the “hit/miss” methods are particularly notable 
among the commonly employed POD estimation methods. The POD curve is determined 

based on crack size measurements in the 
“â versus a” approach, typically used in 
ultrasonic testing. On the other hand, the 
“hit/miss” method establishes the POD 
curve by analysing binary outcomes, where 
a “hit” signifies successful detection and 
a “miss” denotes detection failure. This 
review focuses on POD in the context of 
NDT, specifically in phased array ultrasonic 
corrosion mapping (PAUCM), to uncover 
current uncertainty parameters and explore 
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an innovative avenue for enhancing POD assessment by incorporating the material surface 
temperature as an additional parameter.

Keywords: â versus a, hit/miss, model-assisted probability of detection, nondestructive testing, phased array 
ultrasonic testing, probability of detection 

INTRODUCTION

In nondestructive testing (NDT), ensuring defect detection and measurement accuracy 
and reliability is crucial for guaranteeing various components’ and structures’ structural 
integrity and safety. Probability of detection (POD) provides a quantitative measure of 
the effectiveness of an inspection technique for defect identification. POD has emerged 
as a fundamental concept in the aerospace, manufacturing, and infrastructure industries. 

The POD measures the likelihood that an NDT technique can detect flaws of a specific 
size. It is a key performance indicator influencing maintenance, quality control, and risk 
management decisions. POD analysis empowers engineers, inspectors, and decision-
makers to make informed choices based on confidence in defect detection outcomes. 
The significance of POD lies in bridging the gap between theoretical expectations and 
real-world applications, ensuring that inspection methodologies align with the safety and 
quality requirements. Exploring POD is crucial for maintaining inspection accuracy as 
technology advances in the NDT landscape. 

This review aims to comprehensively explore the concept of POD in the context of 
NDT, specifically emphasising its application in phased-array ultrasonic corrosion mapping 
(PAUCM). The primary focus was to investigate the intricacies of POD, particularly 
concerning PAUCM, to uncover the current uncertainty parameters associated with this 
technique. Furthermore, this review aims to explore an innovative avenue for enhancing 
POD assessment by incorporating material surface temperature as an additional parameter.

However, owing to the apparent dearth of existing studies in this specific niche, the 
focus was redirected toward the broader realm of POD assessment within the context 
of phased-array ultrasonic testing (PAUT). Despite its distinct applications, PAUT is 
commonly utilised with an angle beam for weld inspection, and the PAUCM employs 
a straight beam for corrosion detection. The two techniques have the same technology 
and equipment; there is also a similar mode of operation and the presentation of defects. 
Therefore, this review broadly explores historical processes, theoretical foundations, 
methodological strategies, illuminating case studies, and emerging trajectories in the field 
of POD assessment with a particular focus on the context of PAUT. 

This review analyses in-depth contributions from researchers, industry experts, and 
practitioners to help comprehensively understand the evolution, challenges, and potential 
opportunities for POD assessment within the PAUT field.
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Essentially, this endeavour intends to highlight the critical role of POD as a vital 
tool in maintaining the reliability and credibility of NDT practices, especially within the 
PAUT framework. Furthermore, investigating the potential role of the material surface 
temperature as a POD enhancer will pave the way for innovations that refine the accuracy 
and effectiveness of PAUCM in corrosion detection.

PROBABILITY OF DETECTION

POD analysis is a fundamental task in assessing the ability of NDT techniques to detect 
defects. This comprehensive review aims to outline the intricacies of POD analysis and 
trace its developmental trajectory, methodology, and significance in protecting material 
and structural integrity.

Meeker (2000) traced the origins of POD to the 1970s. However, real advancement and 
widespread adoption began after 2000, as evidenced by a literature review of 90 articles. In 
the mid-1970s, an estimation of the probability of flaw detection based on specific flaw sizes 
using uniform POD assumptions was attempted. Initially, binomial distribution methods 
were used for the estimation. However, this approach proved inadequate, as researchers 
discovered the multifaceted behaviour of POD curves (Georgiou, 2007). 

The NDT community shifted towards more intricate models in the 1980s, which 
can capture the relationship between POD and flaw size. Log-logistic and ‘log-normal’ 
distributions are now utilised as sophisticated approximations of POD behaviour, illustrating 
the growing comprehension of this intricate phenomenon (Annis et al., 2015a). 

The three-parameter model expands upon the two-parameter model by introducing the 
Signal Amplitude Distribution (SAD), the POD, and the Signal-to-Noise Ratio (SNR). This 
inclusion offers a more comprehensive representation of the detection process, recognising 
that flaws may exhibit various signal amplitudes. This change began a new era in POD 
analysis, leading to more accurate and relevant estimates (Knopp & Zeng, 2013).

Integrating simulation methodologies and advanced statistical techniques offers a more 
comprehensive and accurate approach to estimating the POD, accounting for a wide range 
of complex variables and uncertainties. Simulation-based approaches, such as Model-
Assisted Probability of Detection (MAPOD), gained prominence during this period. The 
MAPOD approaches leverage computer simulations to replicate real-world inspection 
scenarios, assess the probability of flaw detection in different materials with varying sizes 
and characteristics, and generate realistic data that reflects the complexities of actual NDT 
operations (Rentala et al., 2018).

MAPOD has gained significant traction since its inception by the MAPOD Working 
Group in 2004. Its widespread adoption can be attributed to its capability to simulate 
NDT data for POD assessment, which leads to substantial resource savings (Dominguez 
et al., 2012).
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Simulations have explored multiple variables such as material properties, defect 
geometries, inspection configurations, and environmental conditions. This holistic approach 
has enabled researchers to identify optimal parameters and strategies for flaw detection 
and quantifying uncertainties associated with different scenarios. 

In 2009, the US Department of Defence published a notable handbook, MIL-HDBK-
1823A, titled “Nondestructive Evaluation System Reliability Assessment.” This handbook 
thoroughly explains POD applications and is frequently cited in various POD research 
articles, indicating its widespread circulation and influence in the field (DOD, 2009).

Advanced statistical techniques, including Bayesian methods, have been integrated into 
simulation-based approaches to enhance the accuracy and reliability of POD predictions. 
By combining the simulation results with statistical analyses, researchers can generate 
more robust POD curves that account for the variability and uncertainties introduced during 
inspection (Dominguez et al., 2012). POD estimation methods fall under two primary 
categories: the “â versus a” and the “hit/miss” methods. 

POD computing and evaluation have witnessed the emergence of various techniques 
over time. In addition to Bayesian methods, the Monte Carlo simulation approach is another 
commonly employed technique. This approach entails generating random samples from 
probability distributions and simulating the inspection process to estimate the POD. Monte 
Carlo simulation accounts for uncertainties, such as defect variability and measurement 
error, and precisely estimates POD and associated uncertainties (Abdelli et al., 2019).

The 29/29 method calculates the POD using a set of 29 flawed samples. The inspection 
results are then meticulously analysed to determine the proportion of successfully detected 
flaws. If all 29 flawed samples were accurately identified, the POD is considered 100% 
(Bato et al., 2017).

Maximum Likelihood Estimation (MLE) is an established statistical method for 
determining the parameters of a probability distribution based on observed data. The 
objective of MLE is to identify the parameter values that provide the highest likelihood of 
observing the actual detection outcomes, given a hypothesised model. Nevertheless, MLE-
based approaches have been known to have certain limitations, such as convergence issues 
with algorithms. Despite the findings suggesting an increase in POD with crack length, 
there may be instances in which operators fail to identify large crack sizes, as evidenced 
by preliminary research (Poudel et al., 2022).

Spies and Rieder (2018) employed the Rayleigh-Rice model to develop MAPOD. 
The Rayleigh component represents noise, whereas the Rice component represents the 
signal. This model is particularly relevant in ultrasonic testing because flaw signals are 
commonly concealed within background noise. By separately characterising the signal and 
noise components and subsequently combining them, the Rayleigh-Rice model assesses 
the detectability of flaws.
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After thoroughly examining extensive literature, it is apparent that the “â versus a” 
and binary “hit/miss” methods are the most widely used and central to this article’s focus. 

In the “â versus a” approach, such as in ultrasonic testing, the echo amplitude “â” is 
proportional to the crack size measurement “a”. The objective was to establish a decision 
threshold “â” that maximised crack detection while minimising false alarms attributed to 
noise. To address the variability in the “â versus a” relationship, ASTM-E3023 and MIL-
HDBK-1823A employ linear functions to assign “â” to “a” and incorporate prediction 
intervals to factor in noise and statistical uncertainty (Virkkunen et al., 2019).

The accuracy of the output in POD is affected by the amount of the input data. 
Inadequate data may lead to bias. For instance, MIL-HDBK-1823A recommends analysing 
at least 40 representative defect data points for “â versus a” and signal strength “â” 
measurements, as well as crack sizes “a” (Carboni & Cantini, 2016). Conversely, the “hit/
miss” method determines the POD curve based on binary outcomes, with “hit” indicating 
successful detection and “miss” indicating failure. This “hit/miss” technique requires a 
larger dataset, with a minimum of 60 data sets, to ensure an unbiased and reliable POD 
curve (Virkkunen et al., 2019).

The receiver operating characteristic (ROC) is a vital metric for binary decisions (“hit/
miss” technique). It illustrates four potential prediction outcomes in the binary decision 
scenarios, particularly for defect presence/absence determinations (Topp & Strothmann, 2021).

•	 True Positive (TP): When the system correctly spots a problem in a sample with 
an issue.

•	 True Negative (TN): When the system correctly says everything is fine with a 
sample that is indeed problem-free.

•	 False Positive (FP): When the system mistakenly thinks a problem in a sample is 
okay. It is like a false alarm.

•	 False Negative (FN): When the system misses a real problem in a sample, failing 
to identify it. It is like overlooking an actual issue.

Reliability in NDT is often expressed in the defect size, which has a 90% probability 
of being detected, referred to as “a90.” This value is presented with a 95% confidence 
interval to address statistical uncertainty denoted as “a90/95” (Annis, 2014).

Design of Experiment POD (DOEPOD) is a methodology pioneered by the National 
Aeronautics and Space Administration (NASA). This approach builds on prior NASA 
work on POD, based on binomial distribution, by introducing the concept of a90/95 
(Poudel et al., 2022). Virkkunen et al. (2019) utilised the DOEPOD model, which extends 
the binomial perspective of hit/miss data. The primary motivation behind the DOEPOD 
model is to address the limitation of assuming POD as a function of flaw size following a 
specific model, as in MAPOD estimation.

DOEPOD aims to provide an efficient and accurate methodology for estimating 
the observed POD and confidence limits for both hit/miss and signal amplitude testing 
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scenarios. Unlike MAPOD, DOEPOD does not assume that the prescribed POD functions, 
such as logarithmic or similar, are adequate across a wide range of discontinuity sizes and 
testing system technologies. Therefore, multi-parameter curve fitting or model optimisation 
approaches are unnecessary to generate a POD curve (Generazio, 2009).

The various methods for calculating POD have their unique efficacy, and the application 
of POD may vary depending on the scope of application. Table 1 concisely compares the 
different POD computing methods, highlighting their advantages and limitations.

Table 1 
POD computing and evaluation method comparison

POD method Advantage Limitation
Binary Hit/
Miss

•	 Easy to understand, and quick 
assessments are appropriate.

•	 Provide clear-cut results for making 
decisions.

•	 Neglecting subtleties and uncertainties, the 
detection procedure is oversimplified.

•	 Does not offer a probabilistic framework for 
quantifying uncertainty.

â versus a •	 Provides a methodology based on 
probability to estimate POD and 
related uncertainty.

•	 Provides for the estimation of several 
parameters, increasing adaptability.

•	 Demands rigorous consideration when 
choosing the model’s parameters and 
assumptions.

•	 Complicated models or high-dimensional 
parameter spaces could need a lot of 
processing power.

Bayesian 
Approaches

•	 Flexibility in handling complex models 
and incorporating prior information.

•	 Provides a structure for assessing 
uncertainty and drawing probabilistic 
conclusions.

•	 Computationally demanding, particularly 
for models with extensive parameter spaces.

•	 The inclusion of subjectivity in the 
specification of prior distributions may result 
in the introduction of bias.

Monte Carlo 
Simulation

•	 POD estimations that are realistic and 
include related uncertainties.

•	 Ideal for intricate examination 
situations when there are multiple 
sources of uncertainty.

•	 Depends on presumptions of the model’s 
parameters and underlying probability 
distributions.

•	 Computationally costly, especially when 
doing large-scale models.

29/29 Method •	 Straightforward approach.
•	 Suitable for routine inspections, this 

system is simple to use and understand.

•	 Its breadth is restricted because it is based on 
a predetermined set of faulty samples.

•	 It might not fully represent the variety and 
ambiguities in actual inspection situations.

Maximum 
Likelihood 
Estimation 
(MLE)

•	 Statistically sound methodology for 
estimating parameters.

•	 Effective model parameter estimation 
from observable data.

•	 Vulnerable to problems with convergence, 
especially with limited data or sophisticated 
models.

•	 Assumes that the process of generating the 
data is accurately represented by the model 
that is being fitted.

Rayleigh-
Rice Method

•	 Particularly ultrasonic testing, which 
improves the evaluation of defect 
detectability.

•	 Accuracy is increased by characterising 
the signal and noise components 
separately.

•	 Makes assumptions regarding the 
distributions of the signal and noise.

•	 Restricted application to different inspection 
settings or NDT techniques.
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POD Application in NDT Methods

The concept of POD revolves around quantifying the likelihood of successfully detecting 
a flaw of size ‘a’ through a probabilistic function known as POD. This function serves a 
twofold purpose: it measures the efficacy of NDT methods in identifying such flaws and 
contributes to developing risk-based maintenance strategies (Yusa et al., 2016).

The integration of POD analysis is essential to ensure the credibility of the NDT 
inspection procedures. Its fundamental role in validating the dependability of inspection 
methods is widely recognised, and it is commonly mandated as an integral component 
of qualification projects, particularly in safety-critical sectors such as aeronautics (Bato 
et al., 2020). Not all discontinuities can be classified as harmful defects, and it is crucial 
to assess the size of the discontinuity to determine whether detection is required because 
small discontinuities within thick structures may not be detrimental. 

Ultrasonic Testing (UT) and Phased Array Ultrasonic Testing (PAUT)

Ultrasonic Testing (UT) techniques are essential for NDT because they can detect internal 
structures and defects in materials. UT has been used for POD analysis and has gained 
significant attention for improving the reliability of defect detection. POD analysis 
originated in the 1970s; however, its development accelerated after 2000, with a notable 
presentation of diverse defects and POD in UT (Meeker, 2000). Exploration of depth as a 
parameter for model predictions has also begun. POD curves are constructed based on the 
defect length, depth, orientation, defect type, shape, operator differences, and inspection 
environment, which can influence inspection accuracy (Subair et al., 2014).	

Current methods for determining the probability of detecting the defect length, size, 
or depth through POD curves involve model simulations, expert insights, experimental 
trials, or their combinations. Human elements play a crucial role, particularly in inspection 
methods such as UT and Radiography testing (RT), where human judgment is essential. 
Automated NDT methods and computer-aided calculations have been employed to address 
the problem of inconsistencies at actual construction sites (Wall et al., 2009).

Kojima et al. (2019) explored the effect of human factors on POD parameters during 
ultrasonic inspection. They found that certified and uncertified inspectors had a similar 
failure risk when detecting stress corrosion cracking in stainless steel pipes.

Flat-bottom holes (FBH) and side-drilled holes (SDH) are commonly used for 
calibration during ultrasonic testing. FBHs are easy to manufacture and mimic various 
defects; however, their circular shape may not match them (Stubbs, 2005). An experiment 
was conducted to detect fatigue cracks and POD using a 0.5 mm diameter and 5 mm 
high FBH. Actual FBH dimensions represented “a” and ultrasonic defect echo amplitude 
represented “â” Statistical analysis determined the best linear fit between “a” and “â” 
(Rentala et al., 2016).



2172 Pertanika J. Sci. & Technol. 32 (5): 2165 - 2191 (2024)

Jan Lean Tai, Mohamed Thariq Hameed Sultan, Farah Syazwani Shahar, Noorfaizal Yidris, Adi Azriff Basri and Ain Umaira Md Shah

This approach optimises the probability of detecting common in-service fatigue cracks 
(Carboni & Cantini, 2016). Apart from the manufacturing phase NDT, periodic inspections 
are crucial for identifying deteriorated structures in service. In-service inspections are more 
challenging owing to the complexity of defects. Fatigue cracks are a frequent problem when 
structures or equipment are in regular use, and POD can aid in fatigue life inspection. The 
Probability of Failure (POF) can be estimated using ultrasonic-detected defect data and 
actual defect data (Guan et al., 2014). 

PAUT utilises POD curves based on binary ‘hit/miss’ data but does not account for 
defect location and dimension accuracy on welds. Consequently, a follow-up “â versus a” 
analysis was conducted, enhancing accuracy. The ongoing research has been extended to 
stainless steel and dissimilar materials welds by incorporating real defects and artificial 
Electrical Discharge Machining (EDM) notches (Kurz et al., 2012; Kurz et al., 2013). One 
practical application of POD studies lies in PAUT, mainly using reference blocks made from 
composite materials with FBHs. These studies aim to gauge the reliability and capabilities 
of PAUT in detecting flaws such as FBHs in composite materials, offering insights into 
inspection technique performance and sensitivity (Dominguez et al., 2016).

In recent years, researchers have emphasised the integration of the Total Focusing 
Method (TFM) and Full Matrix Capture (FMC) to enhance the imaging capabilities of 
PAUT significantly. The TFM technique synthesises multiple ultrasonic waves captured by 
an array of transducers. Subsequently, the received signals are processed, and the ultrasonic 
energy is focused on specific points within the material, generating high-resolution images 
with improved defect detection and characterisation (Caulder, 2018). FMC was developed 
to address the limitations of conventional PAUT data acquisition methods, which typically 
capture only a subset of the available ultrasonic data. This approach records the complete 
set of ultrasonic signals captured by the transducer array, providing a comprehensive dataset 
that can be utilised for various post-processing techniques, including TFM. 

The increasing popularity of TFM and FMC has led to research efforts to refine their 
underlying algorithms (Zhao et al., 2023). The TFM/FMC algorithm consists of four main 
steps: (1) data acquisition, which involves obtaining raw ultrasonic data from transducers; 
(2) signal processing, where noise is removed from the raw data, and system imperfections 
are corrected; (3) beamforming, in which the processed signals are combined to focus 
ultrasonic energy on a specific point within the material, and (4) image reconstruction, 
where the focused signals are utilised to generate a high-resolution image.

Advancements in signal processing, beamforming, and image reconstruction have 
enhanced performance and reduced computational time for these algorithms. Moreover, 
machine learning and artificial intelligence techniques are being investigated to further 
enhance the capabilities of TFM and FMC in PAUT (He et al., 2024). These advanced 
algorithms enable high-resolution imaging and accurate defect quantification, ultimately 
improving the overall effectiveness of the inspection process.
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POD is a crucial performance metric for TFM and FMC techniques. It is influenced 
by signal-to-noise ratio, spatial resolution, defect orientation, and defect size (Bajgholi 
et al., 2023). The ongoing development and enhancement of TFM and FMC algorithms 
improve POD in PAUT, ultimately leading to more accurate and reliable defect detection 
and characterisation in various industrial applications.

Eddy Current Testing (ECT)

Eddy Current Testing (ECT) is modelled using complex electromagnetic equations, such as 
Maxwell’s, which are challenging to solve analytically. A numerical approach is preferred 
for accurate modelling (Abdelli et al., 2019). During the ECT of metallic structures, the 
probe induces eddy currents in the material, and changes in the coil impedance are detected 
as the probe traverses a surface or near-surface crack. These changes are measurable 
parameters and typically increase with the defect size. 

A POD demonstration test was conducted to evaluate the performance of the ECT 
system using standardised specimens with known crack sizes and distributions. The 
procedure involved scanning the specimens to gather the ECT response data for specific 
crack sizes, and the POD curve was developed using a two-step analysis: 

1.	 Establishing “â versus a” Relationship: This step employs advanced regression 
techniques to establishes a mathematical link between the measured EC signal 
response “â” and actual crack size “a,” accounting for factors such as depth and 
inspection process variability (Zhu et al., 2018).

2.	 Constructing the POD Curve: Building on normal probability theory, this phase 
involves creating the POD curve, depicting the probability of detecting a flaw 
of size “a” based on measured EC signal response “â”. This curve gauges the 
reliability of the EC inspection system for detecting various flaw sizes.

While the “â versus a” relationship provides average ECT signal responses for specific 
crack sizes, variations can occur in measured responses even for identically sized cracks 
due to physical attributes of flaws like depth and fluctuations in the ECT process. Statistical 
techniques can be used to evaluate the capability and reliability of ECT for detecting cracks 
and defects (Brown, 2009).

Repeated stresses can lead to fatigue-induced cracks, even below a material’s breaking 
point, such as the circular crack growth around a hole. A method called “bolt-hole eddy 
current” (BHEC) uses a sensor inserted into a hole to detect changes indicative of cracks 
or issues (Underhill et al., 2018).

Similarly, Underhill and Krause (2011) inspected fatigue cracks in aluminium bolt-
holes, generating POD using the crack depth and length as uncertain parameters. A follow-
up study by Underhill and Krause (2016) examined corner cracks with 45 EDM notches 
and 72 fatigue cracks using BHEC.
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Finland secures nuclear waste using copper canisters and ensures that their leak-free 
integrity is crucial. Kanzler et al. (2019) constructed a POD curve for a canister using the 
ECT method.

However, Xu et al. (2023) emphasised that POD would decrease due to the decrease 
in eddy current density, leading to the deterioration of SNR.

Radiography Testing (RT)

Weld defects exhibit diverse shapes, which makes it challenging to establish reliable and 
efficient POD assessments (Kanzler & Müller, 2016a). RT features a dynamic threshold 
adjusted based on defect size. This method tailors the detection thresholds according to 
the defect dimensions. However, acquiring sufficient data for POD assessment can be 
resource-intensive. Weld defects exhibit diverse shapes, which makes it challenging to 
establish reliable and efficient POD assessments (Kanzler & Müller, 2016a). 

Innovative methodologies are required to address the complexity of utilising the actual 
defects for POD calculations. One such strategy is an indication size-dependent evaluation 
that addresses two key defect parameters. However, this approach requires a large amount 
of data. A smoothing algorithm is introduced to enhance the evaluation accuracy, which 
considers physical characteristics and defect detection capabilities (Kanzler & Müller, 2016b). 

The Bayesian approach is useful for calculating POD curves, especially in situations 
with few defects. This method is essential when detailed results are required, such as 
nuclear fuel disposal canisters. The Bayesian approach was used to derive POD curves in 
this context because it meets the strict safety requirements for nuclear applications, and 
few actual defects are owing to high-quality production techniques. This method combines 
available data, expert knowledge, and statistical reasoning to provide reliable insights into 
the performance and capabilities of RT (Kanzler et al., 2012).

The influence of RT techniques on POD evaluation for planar flaws, such as cracks, is 
affected by various factors, including the flaw orientation relative to the beam direction, 
human factors, application conditions, accessibility, equipment sensitivity and resolution, 
manufacturing processes, and material properties. Equations were used to construct POD 
curves for cracks using varying parameters, such as grain diameter, thickness sensitivity 
percentage, crack width, and number of orientations. The results showed that increasing 
the number of orientations and crack width increased POD, whereas higher sensitivity 
values and larger object diameters decreased POD (Ghose, 2013).

Computed Radiography (CR) uses reusable storage phosphor plates instead of films for 
industrial Radiography. Research has shown that medium-resolution CR systems perform 
better for flaw detection at certain dose thresholds, which affect the computed POD. It 
suggests that medium-resolution CR systems are more effective for detecting flaws detection 
at these dose levels (Mohr & Willems, 2008).
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It is crucial to compare the POD of various defect detection algorithms using artificial 
X-ray Computed Tomography (XCT) data from industrial specimens. Artificial XCT 
data were generated through numerical XCT simulations, which enabled the controlled 
incorporation of specific defects or pores at predefined locations (Yosifov et al., 2023). XCT, 
a vital volumetric imaging technique, is widely used in X-ray-based digital radiography 
(XDR) and POD computation. This approach often involves creating specimens with 
distinct artificial defects to capture the shape and size variations. 

XCT simulations have applications in the biomedical and material science sectors 
for virtual radiographic testing optimisation and forecasting NDT systems’ reliability 
using ray-tracing algorithms similar to SimCT to generate radiographic images (Yosifov 
et al., 2022).

A study by Kim et al. (2021) carried out an XCT experiment where NDT signals’ â’ 
were compared with direct measurements of the actual property value. Statistical modelling 
accounted for the inherent noise in the NDT signal. Notably, the same types of flaws may 
not consistently produce the same signal, and even flaws of identical size might result in 
different signals. The estimation of a POD curve is grounded in NDT measurements taken 
from flaws of different sizes. Initially, this method was employed to evaluate flaws during 
the operational lifespan of a component.

Structural Health Monitoring (SHM) and Guided Wave (GW)

Structural Health Monitoring (SHM) involves embedding sensors in a system to continuously 
evaluate structural health throughout its operational life. Guided waves, or Lamb waves, 
are sequentially emitted and received by the sensors to generate a comprehensive structure 
scan. Comparing these scans with a baseline scan captured when the structure was pristine 
provides a visual representation of the structural condition (Calmon et al., 2019).

These waves effectively identify surface and internal structural anomalies such 
as delamination, holes, cracks, corrosion, and wear in lap joints. Assessment of NDT 
capabilities often uses the Berens model, which employs POD curves to illustrate the 
likelihood of flaw detection based on size (Gianneo et al., 2016a). However, POD curves 
may exhibit nonlinear patterns with respect to the crack size, reflecting fluctuations 
supported by numerical simulations and empirical data (Gianneo et al., 2016b).

Forsyth (2016) proposed a novel approach using a single specimen with a growing 
crack to address the variability in crack responses and the impact of repeated inspections 
on the POD estimation. Forsyth (2016) emphasised that in many POD studies, the primary 
source of variability is not the measurement process but rather the diverse responses among 
cracks of similar sizes. It implies that reducing the sampling may lead to inaccurate POD 
estimates. Although treating repeated inspections as independent events to enhance POD 
is appealing, it contradicts the literature.
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NDT and SHM share similarities, but their sensor setups affect POD curve interpretation. 
Portable sensor arrays are fundamental to NDT methods, such as ultrasonic wave testing, 
whereas guided wave monitoring in SHM employs permanently fixed transducers. POD 
curves help to evaluate the damage-detection capabilities within a predefined setup and 
damage location for SHM systems (Bayoumi et al., 2021).

Tschoke et al. (2021) project focussed on creating an SHM system for safety-critical 
components made from carbon fibre-reinforced polymer (CFRP) in the automotive sector. 
POD varies based on the defect size, as shown in the POD curves. However, the regulatory 
framework for SHM is still evolving, and a significant challenge is the lack of reliable 
methods for assessing POD in SHM systems. 

POD Application in Diverse NDT Methods

The UT and ECT are prominent NDT techniques. However, NDT encompasses diverse 
methods, each significant in defect detection and characterisation.

Fluorescent Penetrant Testing (PT) is a versatile technique used throughout the various 
stages of manufacturing to identify surface cracks. The objective was to detect linear 
indications using POD curves that encapsulate the inspector’s ability to detect specific 
crack sizes. The analysis categorises outcomes as hits, misses, or false calls and quantifies 
an inspector’s proficiency (Herberich, 2009).

A comprehensive case study on PT was delved into a POD investigation across 27 
titanium samples involving multiple inspectors. The resulting POD curve provides insights 
into crack detection effectiveness, accounting for factors such as inspector performance 
and testing conditions (Caturano et al., 2009).

Acoustic Emission (AE) monitoring is a valuable technique for detecting wire 
failures because it captures audible sounds from material defects. AE technology 
provides a comprehensive solution for identifying cable breaks, fatigue cracks, and 
corrosion (Lembersky et al., 2012). However, challenges arise due to the unique nature 
of diagnostic signals and source dynamics, making distinguishing genuine AE signals 
from noise difficult. A holistic approach, including stress stimuli, source behaviour, wave 
propagation, sensor sensitivity, and detection threshold, provides insights into the POD 
(Hossain et al., 2013).

Incorporating Infrared thermography (IR) into CFRP materials involves creating 
POD curves through experimental methods. Testing CFRP samples with known defects 
provided a statistical analysis, offering insights into the technique’s defect identification 
performance (Peeters et al., 2018). 

Pulsed Thermography is effective for materials exhibiting rapid heat diffusion. POD 
analysis aids in quantifying defects and assessing accuracy by stimulating materials with 
energy bursts and capturing thermal data (Accardi et al., 2023).
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Model-Assisted Probability of Detection

Recent advancements in POD analysis have involved incorporating computational 
models and simulations to improve defect detection. This study examines the evolution of 
MAPOD by tracing its development from traditional POD analysis to advanced simulation 
techniques. MAPOD originated in the early 2000s when scholars first recognised the 
potential of computer-aided models in ultrasonic corrosion mapping for POD estimations 
(Burch et al., 2005). 

The MAPOD working group was established in the US in 2004, and later, similar 
initiatives emerged in Europe, such as SISTAE in France and PICASSO (Dominguez 
et al., 2016). These efforts aimed to bridge the gap between mathematical models and 
experimental data, thereby allowing the prediction of a broader range of defect types and 
inspection scenarios.

As POD models evolve, diverse mathematical frameworks have emerged to support the 
MAPOD analyses. MAPOD simulates data using statistical or finite element methodologies, 
reducing reliance on resource-intensive experimental data (Wright, 2016). Conventional 
POD analyses are limited by their reliance on a single parameter; however, Yusa et al. 
(2018) advocated for a multi-parameter POD model facilitated by numerical simulations. 
Baskaran et al. (2021) extended the MAPOD paradigm to ECT, harnessing multiple flaw 
response signals, including the defect length and coil impedance at different frequencies.

Although MAPOD offers efficiency, validating the resulting probabilistic POD curves 
is also essential. A study by Le Gratiet et al. (2017) compared POD curves generated 
using four methods: Behrens, binomial-Barens, polynomial chaos, and kriging. The study 
found subtle differences in the lower 95% bounds of the a90/95 estimates, highlighting 
the complexity of the detectable defect size estimation. 

Rodat et al. (2017) applied the MAPOD methodology to the ultrasonic inspection 
of composite materials, incorporating input vectors such as material thickness, FBH 
diameter, and surface defect depth (FBH depth). The resultant output vector captured 
defect characteristics.

Mh1823 POD Software

The MIL-HBDK-1823A manual provides a comprehensive guide for constructing POD 
studies (DOD, 2009). It also includes a helpful Mh1823 POD software download guide 
built on the R statistical and graphics engine, which can be accessed on the Statistical 
Engineering website (https://www.r-project.org/). 

Tschoke et al. (2021) demonstrated the automotive industry’s application of POD 
analyses in creating SHM systems for CFRP components. They emphasised the international 
recognition of the MIL-HDBK manual and Mh1823 software as well-established standards 
for conducting these evaluations.
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Forsyth and Aldrin (2009) provided a practical demonstration for conducting a POD 
curve study on BHEC using the Mh1823 software. Choi et al. (2022) replaced RT with UT 
and PAUT and detected volumetric defects through round-robin tests on various materials. 
POD analysis was performed using the Mh1823 POD analysis software, while a simulation 
using finite element techniques explored the potential of eddy current testing for detecting 
stress corrosion cracking signals (Yusa, 2017). The resulting POD curves were generated 
using the R software.

Kurz et al. (2012) documented using Mh1823 in the PAUT domain. TFM, a synthetic 
focusing technique, was integrated with Mh1823. It uses full-matrix capture to capture 
fundamental ultrasonic signals, enhances defect boundary delineation, generates coherent 
signals, and mitigates noncorrelation artefacts (Bajgholi et al., 2023).

Ground-penetrating radar (GPR) is used in civil engineering to detect rebar and tendon 
ducts within concrete structures. Its effectiveness is highlighted by its ability to uncover the 
subsurface features. Mh1823 software was employed for uncertainty analysis to evaluate 
GPR’s reliability of the GPR. This software is a reliable tool for determining the precision 
of GPR in identifying subsurface features within concrete structures (Feistkorn & Taffe, 
2014). Remarkably, Mh1823 has additional applications beyond NDT, including predicting 
driving behaviour (Ameyaw et al., 2019).

Computational Intelligence for Visual Applications (CIVA) Software

CIVA began in the early 1990s and evolved into a comprehensive toolkit with modules 
for various NDT methods, including UT, GW, ECT, RT, and CT. It is now an all-
encompassing solution for simulating and analysing diverse NDT techniques across 
industries (Foucher et al., 2018). CIVA enables the generation of POD curves more 
efficiently and cost-effectively based on the precision, consistency, and repeatability of 
theoretical POD simulations. In pulsed-echo ultrasonic inspection, parameters such as 
defect length or size are crucial for generating POD curves. CIVA facilitates MAPOD 
through Monte Carlo simulations and establishes relationships between the input 
parameters and POD outcomes (Schneider et al., 2012).

CIVA is useful for calculating various uncertainty parameters. Dominguez et al. (2012) 
show how CIVA can be used to calculate the uncertainty parameters for PAUT. Automation 
reduces human errors during the inspection process. Parameters such as the water parts, 
defect angular position, and radial position were used for the uncertainty analysis for 
the PAUT. The study confirmed that a well-designed PAUT procedure can achieve 90% 
probability and 95% confidence in detecting a 0.5 mm diameter void.

Ribay et al. (2017) examined the use of CIVA for generating ‘hit/miss’ studies in the 
PAUT of centrifugally cast stainless steel pipes. This study focuses on high-attenuation 
surfaces with coarse grain structures and material thicknesses as crucial parameters for the 
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analysis. Haapalainen and Leskelä (2012) used CIVA to generate defect-size-dependent 
‘a’ vs. signal response ‘â’ curves to detect service-induced cracks. 

Marcotte and Liyanage (2017) combined multiple NDT techniques for inspection. 
They used ECT and PAUT and obtained promising results for detecting target defects. The 
study validated the CIVA software and suggested using multi-technique inspection systems.

Dominguez et al. (2010) and Jenson et al. (2011) conducted High-Frequency Eddy 
Current Testing (HFET) to detect fatigue cracks in titanium alloys. Their study demonstrated 
a close alignment between simulated POD and experimental POD, bolstering confidence 
in the CIVA’s predictive capabilities.

Similarly, CIVA is instrumental in simulating ECT scenarios. Goursolle et al. (2016) 
simulated ECT on fatigue cracks in Inconel 718 material, emphasising the influence of 
parameters such as inspectors, air gap, and frequency settings. Bato et al. (2017) and Bato 
et al. (2020) highlight how CIVA offers advantages in evaluating the impact of human 
factors on POD through simulation rather than experimentation. This approach contributes 
to the enhanced credibility of the model.

After that, CIVA extends its reach to RT. Tisseur et al. (2019) elaborated on CIVA’s 
version 11, which introduced a POD simulation tool within the RT module. This tool caters 
to scenarios where the radiation source is aligned with the defect or circumferentially 
misaligned, demonstrating the platform’s versatility.

Other Software Recommended by Researchers

Lei et al. (2022) highlighted the significance of various factors in POD analysis, such 
as test methods, materials, defects, equipment, and human factors. These multifaceted 
influences are owed to the complexity of POD estimation. They introduced SimSUNDT 
software, designed by the Chalmers University of Technology in Sweden, to enhance 
PAUT’s capability to replicate intricate inspection scenarios.

Subair et al. (2014) used simulation-driven POD estimation with ABAQUS 
software to explore pulsed electron ultrasound propagation for stainless steel surface 
notch detection. They evaluated the impact of various factors, including probe position, 
incident wave angle, and ultrasound frequency. The authors compared logarithmic 
scatter plots of simulated and experimental defect response signals using a simulation-
experimental correlation approach and validated their findings using linear regression 
analysis in MATLAB.

Volker et al. (2004) introduced the “POD-generator” software, designed to enhance the 
structural integrity of pipes and pipelines through corrosion inspections using an ultrasonic 
technique. The software integrates data from the inspection and degradation models to 
determine the integrity of the three components. It produces a curve based on POD in 
specific scenarios, thereby improving the reliability in assessing structural conditions.
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Fusing simulated and experimental data enhances the NDT performance 
evaluation and reduces costs. Gollwitzer et al. (2011) introduced the concept of 
merging these datasets to enhance the NDT performance estimation. The aRTist tool 
is the foundation for this approach. SimuPOD provides a user-friendly interface for 
defining the calculation series and automating the analysis, focusing on POD studies. 
This innovation streamlines the reliability and effectiveness of the NDT methods and 
increases their practical applicability.

Literature Review Summary

NDT techniques must be accurate, reliable, and critical across aerospace, manufacturing, 
petrochemical, and civil engineering industries. POD analysis is a powerful tool that 
quantifies inspection reliability by considering the defect size, materials, inspection 
configuration, and human factors. Linking NDT methods and risk assessment enhances 
decision-making and improves safety and efficiency.

An exploration encompassing around 70 articles titled “POD” or “probability of 
detection” from 2000 to 2023 reveals that the concept of POD has garnered extensive 
application across various NDT methods. The trajectory of its usage has revealed an 
intriguing pattern shaped by both temporal evolution and technological advancements. 

POD originated in the aerospace industry owing to its strict demands. ECT is a crucial 
tool because of its widespread use in the aerospace industry. UT was among the first to 
adopt POD. In this review of 70 articles, ECT methods were mentioned in 18 papers, 
whereas UT was mentioned in 17 papers, totalling half of the corpus.

PAUT closely followed ten papers, indicating its established position in the NDT 
landscape. However, as the software landscape matured, there was a shift towards more 
sophisticated analytical capabilities. This is evident from the substantial growth in RT and 
GW SHM, which will account for 20% of the literature combined. This evolution shows 
the profound impact of software advancements in facilitating intricate analyses, expanding 
the POD’s purview to include crucial domains such as SHM.

Despite having a smaller proportion, other NDT methods play a significant role in 
defect detection. PT and AE accounted for 4%, indicating their values in the field. The IR 
and other combined methods comprised the remaining portions. This distribution highlights 
the diverse avenues through which POD affects NDT, as shown in Figure 1.

The articles’ analyses showed the evolution of POD in NDT methods and its 
correlation with software development. ECT and UT initially had a stronghold, but 
broader adoption of POD occurred in RT and SHM. POD enhances defect detection 
and is critical in various industries. The trend of employing POD software is set to 
expand with the increase in the MAPOD methodology, leading to greater efficiency 
and cost-effectiveness.
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Figure 1. Distribution of POD application in different NDT methods
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Table 2 
Selected software for POD studies by other researchers 

Software Description Reference
Mh1823 
POD

Is a free software that can be accessed 
from the Statistical Engineering website 
(https://statistical-engineering.com/)

Forsyth & Aldrin, 2009; Kurz et al., 2012; Yusa, 
2017; Tschoke et al., 2021; Choi et al., 2022; 
Bajgholi et al., 2023

CIVA The CIVA software is a versatile 
commercial tool that extends its utility 
beyond POD analysis. It encompasses a 
range of simulation software for various 
NDT methods.

Dominguez et al., 2010; Jenson et al., 2011; 
Schneider et al., 2012; Haapalainen & Leskelä, 
2012; Dominguez et al., 2012; Dominguez et al., 
2016; Goursolle et al., 2016); Ribay et al., 2017; 
Marcotte & Liyanage, 2017; Bato et al., 2017; 
Foucher et al., 2018; Calmon et al., 2019; Tisseur 
et al., 2019; Bato et al., 2020

MATLAB MATLAB provides various built-in 
functions and toolboxes for various 
applications, including mathematics, 
engineering, physics, finance, image 
processing, machine learning, and more.

Subair et al., 2014

simSUNDT It is a simulation software for UT Lei et al., 2022
aRTist
SimuPOD

The aRTist is a computer simulation 
of both film and digital radiography. 
SimuPOD is one of the modules.

Gollwitzer et al., 2011

MAPOD is undeniable owing to technological evolution, offering time and cost savings 
and rapid generation of accurate POD curves using simulation data. It expedites defect 
detection and assessment while maintaining reliability.

Throughout the reviewed literature, other researchers’ utilisation of POD software has 
been documented in Table 2.

The specific testing method used can influence the parameter variations. Although 
general factors remain relevant, additional considerations arise in RT, such as the direction 
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of the testing beam and the testing process itself. In the PAUT, the defects’ water paths, 
as well as the angular and radial positions, need to be considered. These method-specific 
variations highlight the complexity of parameter selection in the POD analysis.

DISCUSSION

The primary objective of this literature review is to identify existing examples of 
utilising POD in the context of PAUCM. While PAUCM boasts numerous advantages in 
corrosion detection, recent studies have highlighted its adaptability for in-line inspections, 
particularly in elevated surface temperature conditions (Tai et al., 2023). Despite the 
robust presentation of detection data, integrating POD as a crucial tool for upholding the 
reliability and credibility of the PAUCM process would provide additional substantiation 
for the dependability of this application.

Although specific instances of applying POD in the context of PAUCM have not been 
uncovered, the review has elucidated the widespread utilisation of POD in other NDT 
methods. Concurrently, it has underscored the significance of uncertain critical parameters 
as pivotal inputs. By commencing with considerations of defect length and depth, the 
investigation expanded to encompass various factors, including defect type, size, dimensions, 
orientation, shape, and location, while also addressing the influence of human factors.

The application of PAUCM could explore an innovative avenue for enhancing POD 
assessment by incorporating the material surface temperature as an additional parameter, 
potentially yielding more robust results.

Additionally, this review indicates the existence of two primary POD models: the “hit/
miss” model for image-type defects and the “â versus a” model for defects represented in 
signal amplitude forms, as illustrated in Figures 2 and 3.

PAUCM, a manifestation of PAUT, presents information through A-, B-, C-, and S-scan 
images, thus providing a comprehensive three-dimensional perspective of the defects.

The A-scan mode resembles the traditional UT mode and displays the ultrasound 
echo amplitudes. The B, C, and S scans offer essential imaging tools for accurate defect 
localisation, as shown in Figure 4. The PAUCM ultrasound beam is aligned perpendicular 
to the test object, like the 0-degree normal probe in the UT.

Figure 2. Image type NDT methods suitable for “Hit/Miss” POD

Magnetic Particle Testing Penetrant Testing Radiography Testing Infrared Thermography



2183Pertanika J. Sci. & Technol. 32 (5): 2165 - 2191 (2024)

Review of POD Analysis and Applications in PAUCM

Figure 4. PAUT A-, B-, C- and S-scan presentation

Figure 3. Amplitude type NDT methods suitable for “â versus a” POD

Eddy Current Testing Ultrasonic Testing Guided Wave Testing Acoustic Emission

PAUCM simultaneously presents information in image type and signal amplitude 
forms, making it suitable for both primary POD models. This dual representation not only 
enhances the feasibility of POD but also allows for relative comparisons.

The primary challenge currently lies in the practical application of POD despite a clear 
understanding of its foundational concepts. While other researchers have employed various 
POD computing methods, there remains a gap in translating this knowledge into practical 
implementation. Moving forward, the focus will be on mastering the utilisation of the 
MH1823 POD software, using the comprehensive guidance outlined in its accompanying 
handbook. In addition, dedicated experimental studies will be conducted for PAUCM, 
allowing for the precise collection of data. Subsequent analyses will rigorously examine 
various uncertainty parameters to construct and compare POD curves carefully, thereby 
improving the reliability of the assessments.
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CONCLUSION

This comprehensive review highlights the dynamic evolution of POD and its multifaceted 
applications to various NDT methods. The exploration encompasses the nuanced utilisation 
of both “hit/miss” and “â versus a” approaches, the emergence and significance of MAPOD, 
the expedient role of cutting-edge POD software in curve generation, and the exciting 
prospect of PAUCM within the POD framework.

The journey through this scholarly terrain underscores the remarkable versatility of 
POD, traversing a broad spectrum of NDT methods and catering to diverse application 
domains. POD is a unifying metric for assessing the efficacy of defect detection techniques, 
whether employing UT, ECT, RT, or GW SHM, which mirrors the intricacies of real-
world inspection scenarios, where the choice of the NDT method depends on the specific 
inspection goal and context.

A pivotal insight gleaned from the literature is the significance of parameter selection in 
the POD analysis. The dichotomy of “red and green apples,” as eloquently shared by one of 
the POD luminaries, encapsulates the essence of this challenge (Annis et al., 2015b). Selecting 
appropriate uncertainty parameters is critical to ensure that the chosen parameters accurately 
represent the characteristics of actual defects and align with the intended applications.

Concluding the literature review, it is evident that further exploration of PAUCM 
is worthwhile. The practical implementation of POD in real-world inspection scenarios 
remains a vital milestone. This journey necessitates a harmonious interplay between 
theoretical and practical insights, allowing for the effective integration of POD concepts 
into the operational landscape of PAUCM.
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